Discriminative Reranking for Natural Language Parsing

نویسنده

  • Michael Collins
چکیده

This paper considers approaches which rerank the output of an existing probabilistic parser. The base parser produces a set of candidate parses for each input sentence, with associated probabilities that define an initial ranking of these parses. A second model then attempts to improve upon this initial ranking, using additional features of the tree as evidence. We describe and compare two approaches to the problem: one based on Markov Random Fields, the other based on boosting approaches to reranking problems. The methods were applied to reranking output of the parser of Collins (1999) on the Wall Street Journal corpus, with a 13% relative decrease in error rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Survey on Three Reranking Models for Discriminative Parsing

This survey is inspired by the so-called reranking techniques in natural language processing (NLP). The aim of this survey is to provide an overview of three main reranking tasks particularly for discriminative parsing. We will focus on the motivation for discriminative reranking, on the three models, boosting model, support vector machine (SVM) model and voted perceptron model, on the procedur...

متن کامل

Discriminative Reranking for Semantic Parsing

Semantic parsing is the task of mapping natural language sentences to complete formal meaning representations. The performance of semantic parsing can be potentially improved by using discriminative reranking, which explores arbitrary global features. In this paper, we investigate discriminative reranking upon a baseline semantic parser, SCISSOR, where the composition of meaning representations...

متن کامل

Adapting Discriminative Reranking to Grounded Language Learning

We adapt discriminative reranking to improve the performance of grounded language acquisition, specifically the task of learning to follow navigation instructions from observation. Unlike conventional reranking used in syntactic and semantic parsing, gold-standard reference trees are not naturally available in a grounded setting. Instead, we show how the weak supervision of response feedback (e...

متن کامل

A Generative Model for Parsing Natural Language to Meaning Representations

In this paper, we present an algorithm for learning a generative model of natural language sentences together with their formal meaning representations with hierarchical structures. The model is applied to the task of mapping sentences to hierarchical representations of their underlying meaning. We introduce dynamic programming techniques for efficient training and decoding. In experiments, we ...

متن کامل

Statistical Ltag Parsing

STATISTICAL LTAG PARSING Libin Shen Aravind K. Joshi In this work, we apply statistical learning algorithms to Lexicalized Tree Adjoining Grammar (LTAG) parsing, as an effort toward statistical analysis over deep structures. LTAG parsing is a well known hard problem. Statistical methods successfully applied to LTAG parsing could also be used in many other structure prediction problems in NLP. F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Linguistics

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2000